Ta strona używa plików cookies. Brak zmiany ustawień przeglądarki oznacza zgodę na ich użycie.[close]
Figury płaskie zadania

11.2-11.3 Klasówka Położenie prostej i okręgu, styczna do okręgu. Styczna prostopadła do odpowiedniego promienia.

Zacznij rozwiązywać test!! Aby wyświetlić prawidłowe rozwiązania i wynik Twojego testu, wyślij SMS o treści AP.TFU4 na nr 73068
Otrzymasz dostęp do wszystkich klasówek i testów, oraz płatnych artykułów przez dwie godziny (120min)!

Koszt SMS 3.69 zł brutto Zobacz inne opcje płatności

Zadanie 1. (2 pkt)

Miary kątów równoległoboku

Oblicz miary kątów równoległoboku, wiedząc, że okrąg jest styczny do dwóch jego boków.


Zaznacz prawidłową odpowiedź:

Zadanie 2. (3 pkt)

Pole trójkąta równoramiennego

Oblicz pole trójkąta równoramiennego latex wiedząc że okrąg wewnątrz trójkąta jest styczny do wszystkich jego boków. Skorzystaj z danych zaznaczonych na rysunku.


Zaznacz prawidłową odpowiedź:

Zadanie 3. (3 pkt)

Okrąg o środku latex i promieniu latex przecięto dwiema siecznymi, z których jedna przechodzi przez punkt latex Między siecznymi powstał kąt latex o wierzchołku leżącym na okręgu. Pozostałe punkty przecięcia siecznych z okręgiem połączono odcinkiem, który pod kątem prostym przecina promień okręgu dokładnie w połowie. Czy da się obliczyć długości wszystkich boków powstałego trójkąta?


Zaznacz prawidłową odpowiedź:

Zadanie 4. (3 pkt)

okrąg styczny do boków rombu

Ile wynosi średnica okręgu, który jest wewnątrz rombu styczny do jego boków, jeżeli wiadomo, że przekątne tego rombu mają długość latex


Zaznacz prawidłową odpowiedź:

Zadanie 5. (4 pkt)

Dany jest okrąg o środku latex i promieniu latex Narysowano prostą styczną do okręgu w punkcie latex Przez punkty latex poprowadzono prostą, która przecięła okrąg też w punkcie latex Z punktu latex poprowadzono dwa odcinki o długości latex każdy w taki sposób, że kąt między odcinkami ma miarę latex a końce tych odcinków - punkty latex - leżą na stycznej do okręgu. Oblicz pole figury latex i podaj miary jej kątów wewnętrznych.


Zaznacz prawidłową odpowiedź:

Zadanie 6. (3 pkt)

Na rysunku dane są dwa okręgi styczne o takim samym promieniu latex oraz trójkąt latex taki, że latex Proste latex są do siebie równoległe. latex jest punktem styczności okręgu o środku latex i prostej latex a latex punktem styczności okręgu o środku latex z prostą latex Punkt latex należy do prostej latex i jest punktem styczności obu okręgów. Wiedząc, że długość boku latex trójkąta jest równa dwie i pół średnicy danego okręgu, oblicz długość latex

Dwa okręgi styczne


Zaznacz prawidłową odpowiedź:

Zadanie 7. (4 pkt)

Dany jest okrąg o środku latex i promieniu latex który jest styczny do czworokąta w punktach latex Odcinek latex jest dwa razy dłuższy od promienia okręgu, a odcinek latex jest średnicą okręgu, a promienie latex są prostopadłe, jak na rysunku. Oblicz długości odcinków latex gdzie latex jest punktem okręgu należącym do odcinka latex


Zaznacz prawidłową odpowiedź:



Aby wyświetlić wynik twojego testu, wyślij SMS o treści AP.TFU4 na nr 73068
Otrzymasz dostęp do wszystkich klasówek i testów, oraz płatnych artykułów przez dwie godziny (120min)!
Koszt SMS 3.69 zł brutto
 Zobacz inne opcje płatności


show_commercials: 0
Do góry ∧

 

arkusze gimnazjalne megamatma

arkusze maturalne megamatma

Szkoła z MegaMatmą